Skip to main content

Choice of Solar Panels


http://energyinformative.org/best-solar-panel-monocrystalline-polycrystalline-thin-film/

Advantages

  • Monocrystalline solar panels have the highest efficiency rates since they are made out of the highest-grade silicon. The efficiency rates of monocrystalline solar panels are typically 15-20%. SunPower produces the highest efficiency solar panels on the U.S. market today. Their E20 series provide panel conversion efficiencies of up to 20.1%.[3]Update (April, 2013): SunPower has now released the X-series at a record-breaking efficiency of 21.5%. [7]
  • Monocrystalline silicon solar panels are space-efficient. Since these solar panels yield the highest power outputs, they also require the least amount of space compared to any other types. Monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels.
  • Monocrystalline solar panels live the longest. Most solar panel manufacturers put a 25-year warranty on their monocrystalline solar panels.
  • Tend to perform better than similarly rated polycrystalline solar panels at low-light conditions.

  • Disadvantages
    • Monocrystalline solar panels are the most expensive. From a financial standpoint, a solar panel that is made of polycrystalline silicon (and in some cases thin-film) can be a better choice for some homeowners.
    • If the solar panel is partially covered with shade, dirt or snow, the entire circuit can break down. Consider getting micro-inverters instead of central string inverters if you think coverage will be a problem. Micro-inverters will make sure that not the entire solar array is affected by shading issues with only one of the solar panels.
    • The Czochralski process is used to produce monocrystalline silicon. It results in large cylindrical ingots. Four sides are cut out of the ingots to make silicon wafers. A significant amount of the original silicon ends up as waste.
    • Monocrystalline solar panels tend to be more efficient in warm weather. Performance suffers as temperature goes up, but less so than polycrystalline solar panels. For most homeowners temperature is not a concern.
  • Polycrystalline Silicon Solar Cells

    The first solar panels based on polycrystalline silicon, which also is known as polysilicon (p-Si) and multi-crystalline silicon (mc-Si), were introduced to the market in 1981. Unlike monocrystalline-based solar panels, polycrystalline solar panels do not require the Czochralski process. Raw silicon is melted and poured into a square mold, which is cooled and cut into perfectly square wafers.

Advantages

  • The process used to make polycrystalline silicon is simpler and cost less. The amount of waste silicon is less compared to monocrystalline.
  • Polycrystalline solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. This technically means that they perform slightly worse than monocrystalline solar panels in high temperatures. Heat can affect the performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account.

Disadvantages

  • The efficiency of polycrystalline-based solar panels is typically 13-16%. Because of lower silicon purity, polycrystalline solar panels are not quite as efficient as monocrystalline solar panels.
  • Lower space-efficiency. You generally need to cover a larger surface to output the same electrical power as you would with a solar panel made of monocrystalline silicon. However, this does not mean every monocrystalline solar panel perform better than those based on polycrystalline silicon.
  • Monocrystalline and thin-film solar panels tend to be more aesthetically pleasing since they have a more uniform look compared to the speckled blue color of polycrystalline silicon.

String Ribbon Solar Cells

String Ribbon solar panels are also made out of polycrystalline silicon. String Ribbon is the name of a manufacturing technology that produces a form of polycrystalline silicon. Temperature-resistant wires are pulled through molten silicon, which results in very thin silicon ribbons. Solar panels made with this technology looks similar to traditional polycrystalline solar panels.
Evergreen Solar was the main manufacturer of solar panels using the String Ribbon technology. The company is now bankrupt, rendering the future for String Ribbon solar panels unclear.

Advantages

  • The manufacturing of String Ribbon solar panels only uses half the amount silicon as monocrystalline manufacturing. This contributes to lower costs.

Disadvantages

  • The manufacturing of String Ribbon solar panels is significantly more energy extensive and more costly.
  • Efficiency is at best on par with the low-end polycrystalline solar panels at around 13-14%. In research laboratories, researchers have pushed the efficiency of String Ribbon solar cells as high as 18.3%.[3]
  • String Ribbon solar panels have the lowest space-efficiency of any of the main types of crystalline-based solar panels.

Thin-Film Solar Cells (TFSC)

Depositing one or several thin layers of photovoltaic material onto a substrate is the basic gist of how thin-film solar cells are manufactured. They are also known as thin-film photovoltaic cells (TFPV). The different types of thin-film solar cells can be categorized by which photovoltaic material is deposited onto the substrate:
  • Amorphous silicon (a-Si)
  • Cadmium telluride (CdTe)
  • Copper indium gallium selenide (CIS/CIGS)
  • Organic photovoltaic cells (OPC)
Depending on the technology, thin-film module prototypes have reached efficiencies between 7–13% and production modules operate at about 9%. Future module efficiencies are expected to climb close to the about 10–16%.[4]
The market for thin-film PV grew at a 60% annual rate from 2002 to 2007.[5] In 2011, close to 5% of U.S. photovoltaic module shipments to the residential sector were based on thin-film.

Advantages

  • Mass-production is simple. This makes them and potentially cheaper to manufacture than crystalline-based solar cells.
  • Their homogenous appearance makes them look more appealing.
  • Can be made flexible, which opens up many new potential applications.
  • High temperatures and shading have less impact on solar panel performance.
  • In situations where space is not an issue, thin-film solar panels can make sense.

Disdvantages

  • Thin-film solar panels are in general not very useful for in most residential situations.They are cheap, but they also require a lot of space. SunPower`s monocrystalline solar panels produce up to four times the amount of electricity as thin-film solar panels for the same amount of space.[3]
  • Low space-efficiency also means that the costs of PV-equipment (e.g. support structures and cables) will increase.
  • Thin-film solar panels tend to degrade faster than mono- and polycrystalline solar panels, which is why they typically come with a shorter warranty.

Solar panels based on amorphous silicon, cadmium telluride and copper indium gallium selenide are currently the only thin-film technologies that are commercially available on the market:
 Amorphous Silicon (a-Si) Solar Cells
Because the output of electrical power is low, solar cells based on amorphous silicon have traditionally only been used for small-scale applications such as in pocket calculators. However, recent innovations have made them more attractive for some large-scale applications too.
With a manufacturing technique called “stacking”, several layers of amorphous silicon solar cells can be combined, which results in higher efficiency rates (typically around 6-8%).
Only 1% of the silicon used in crystalline silicon solar cells is required in amorphous silicon solar cells. On the other hand, stacking is expensive.

Cadmium Telluride (CdTe) Solar Cells

Cadmium telluride is the only thin-film solar panel technology that has surpassed the cost-efficiency of crystalline silicon solar panels in a significant portion of the market (multi-kilowatt systems).
The efficiency of solar panels based on cadmium telluride usually operates in the range 9-11%.
First Solar has installed over 5 gigawatts (GW) of cadmium telluride thin-film solar panels worldwide. The same company holds the world record for CdTe PV module efficiency of 14.4%.[6]
 Copper Indium Gallium Selenide (CIS/CIGS) Solar Cells
Compared to the other thin-film technologies above, CIGS solar cells have showed the most potential in terms of efficiency. These solar cells contain less amounts of the toxic material cadmium that is found in CdTe solar cells. Commercial production of flexible CIGS solar panels was started in Germany in 2011.
The efficiency rates for CIGS solar panels typically operate in the range 10-12 %.
Many thin-film solar cell types are still early in the research and testing stages. Some of them have enormous potential, and we will likely see more of them in the future.

Building-Integrated Photovoltaics (BIPV)

Lastly, we`ll briefly touch on the subject of building integrated photovoltaics. Rather than an individual type of solar cell technology, building integrated photovoltaics have several subtypes (or different methods of integration), which can be based on both crystalline-based and thin-film solar cells.
Building integrated photovoltaics can be facades, roofs, windows, walls and many other things that is combined with photovoltaic material. If you have the extra money and want to seemlessly integrate photovoltaics with the rest of your home, you should look up building integrated photovoltaics. For most homeowners it`s simply way too expensive.

Best Solar Panel Type for Home Use

Having your particular situation evaluated by an expert would be the best way to find out what solar panel type would be best for your household. Here are some of the typical scenarios we see:
 Limited Space
For those who don’t have enough space for thin-film solar panels (the majority of us), or if you want to limit the amount of space their PV-system takes up, crystalline-based solar panels are your best choice (and they would likely be the your best choice even if you had the extra space). There are not a whole lot of solar installers and providers that offer thin-film solar panels for homeowners at this point.
You will have a choice of different solar panel sizes. The 180, 200 and 220-watt rated solar panels are usually physically the same size. They are manufactured exactly the same way, but under- or overperform when tested, hence ending up in different categories for power output. If size is important, you should go for the highest rated power output for a particular physical size.
Both mono- and polycrystalline solar panels are good choices and offer similar advantages. Even though polycrystalline solar panels tend to be less space-efficient and monocrystalline solar panels tend to produce more electrical power, this is not always the case. It would be nearly impossible to recommend one or the other by not examining the solar panels and your situation closer.
Monocrystalline solar panels are slightly more expensive, but also slightly more space-efficient. If you had one polycrystalline and one monocrystalline solar panel, both rated 220-watt, they would generate the same amount of electricity, but the one made of monocrystalline silicon would take up less space.

Lowest Costs

If you want the lowest costs per rated power, or in other words, pay as little as possible for a certain amount of electricity, you should investigate if thin-film solar panels could in fact be a better choice than mono- or polycrystalline solar panels.

Comments

Post a Comment

Popular posts from this blog

Subsidy For Biomass Briquetting Plant Project In India

blog.briquettingpressmachine.com/subsidy-for-biomass-briquetting-plant-project-in-india/ Subsidy for biomass briquetting plant project is the unique feature of this project. The new energy system biomass briquette plant is the great option for need of renewable energy in future. Sustainable energy sources are new expect for future energy sources and that’s why biomass briquetting plant is more preferable in India as well as foreign countries. Government encourages biomass briquette plant project by offering best subsidy plans to buyers. You can find any information of government incentives on biomass briquetting project, here. State Subsidy for  briquetting machine  in India is varies depends upon government taxes. Due to subsidy for biomass briquette plant in India, advantages and profitability of briquetting press machine is great. Being Agriculture country, the current availability of biomass in India is estimated at about 500 millions metric tones per year which is ...

Solar Cell Manufacturers review

There are essentially 3 types of Solar Cell Companies .The tier 1 comprising top 2% do core R&d and are integrated end-to-end.The experience is more than 10 years. The second line about 8% do not indulge in R&d but use partial robotics etc for manufacturing. They have experience of 2-5 years .The rest 90% are assemblers and use human production lines for manual soldering.The projects however have a good capital output ratio .  Here's a good link to review the top Solar Companies  http://www.forbes.com/sites/uciliawang/2014/12/03/guess-who-are-the-top-10-solar-panel-makers-in-the-world/#2e34708f2812 Solar equipment makers are gearing up to expand production again after many of them had to idle production lines or close factories. So who are the top 10 solar panel makers these days? IHS   released its ranking today that put Trina Solar as the top shipper of solar panels in 2014, followed by Yingli Green  Energy . Both companies are based in ...

11 countries leading the charge on renewable energy

https://www.climatecouncil.org.au/11-countries-leading-the-charge-on-renewable-energy/   The need for a swift transition to renewable energy is more urgent than ever. Climate change, driven by the burning coal, oil and gas, is already wreaking havoc on communities, economies and ecosystems right around the world. The easiest, quickest and most effective way of driving down greenhouse gas emissions and giving ourselves the best chance of kicking climate change’s butt is by moving to an energy system based on renewables and storage.  Here are some inspiring countries that are using clever combinations of renewable resources and efficient, targeted policies to drive down their emissions . Sweden In 2012 Sweden reached their target of 50% renewable energy 8 years ahead of schedule. This puts them right on track to reach their 2040 goal of 100% renewable electricity production. How did they do it? By taking advantage of their natural resources and using a com...